Логистическая ошибка, также известная как логарифмическая функция потерь или кросс-энтропия, используется для оценки качества модели логистической регрессии. Этот показатель позволяет определить, насколько хорошо модель предсказывает вероятности для бинарной целевой переменной.
Вот алгоритм:
▪️ Сначала модель логистической регрессии генерирует вероятность принадлежности к классу 1 для каждого наблюдения. ▪️ Затем вероятности преобразуются. Для каждого наблюдения вероятность принадлежности к классу 1 сохраняется, если целевая переменная равна 1. Если целевая переменная равна 0, используется вероятность принадлежности к классу 0, что равно единице минус прогнозируемая вероятность. ▪️Для каждой преобразованной вероятности рассчитывается отрицательный логарифм. ▪️Вычисленные отрицательные логарифмы складываются и делятся на количество наблюдений, чтобы получить среднюю логистическую ошибку. Это значение представляет собой среднюю меру расхождения между предсказанными вероятностями и фактическими классами.
Логистическая ошибка, также известная как логарифмическая функция потерь или кросс-энтропия, используется для оценки качества модели логистической регрессии. Этот показатель позволяет определить, насколько хорошо модель предсказывает вероятности для бинарной целевой переменной.
Вот алгоритм:
▪️ Сначала модель логистической регрессии генерирует вероятность принадлежности к классу 1 для каждого наблюдения. ▪️ Затем вероятности преобразуются. Для каждого наблюдения вероятность принадлежности к классу 1 сохраняется, если целевая переменная равна 1. Если целевая переменная равна 0, используется вероятность принадлежности к классу 0, что равно единице минус прогнозируемая вероятность. ▪️Для каждой преобразованной вероятности рассчитывается отрицательный логарифм. ▪️Вычисленные отрицательные логарифмы складываются и делятся на количество наблюдений, чтобы получить среднюю логистическую ошибку. Это значение представляет собой среднюю меру расхождения между предсказанными вероятностями и фактическими классами.
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.
Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.
Библиотека собеса по Data Science | вопросы с собеседований from ms